The Random Walk Method for Intersecting Families

نویسنده

  • NORIHIDE TOKUSHIGE
چکیده

Let n,k,r and t be positive integers, and let [n] = {1,2, . . . ,n}. A family G ⊂ 2[n] is called r-wise t-intersecting if |G1∩·· ·∩Gr| ≥ t holds for all G1, . . . ,Gr ∈ G . Let us define a typical r-wise t-intersecting family Gi(n,r, t) and its k-uniform subfamily Fi(n,k,r, t), where 0 ≤ i ≤ ⌊n−t r ⌋, as follows: Gi(n,r, t) = {G ⊂ [n] : |G∩ [t + ri]| ≥ t +(r−1)i}, Fi(n,k,r, t) = Gi(n,r, t)∩ ([n] k ) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index

Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...

متن کامل

Most Probably Intersecting Hypergraphs

The celebrated Erdős-Ko-Rado theorem shows that for n > 2k the largest intersecting k-uniform set family on [n] has size ( n−1 k−1 ) . It is natural to ask how far from intersecting larger set families must be. Katona, Katona and Katona introduced the notion of most probably intersecting families, which maximise the probability of random subfamilies being intersecting. We consider the most prob...

متن کامل

The Typical Structure of Intersecting Families

When t = 1, we simply say that the family is intersecting. Consider the following example. Fix a t-set, say I ⊆ [n], and values {xi : i ∈ I}. If for every σ ∈ F and i ∈ I σ(i) = xi, then F is clearly t-intersecting. Furthermore, we say that F is a trivial t-intersecting family of permutations. Note that the size of this family is at most (n − t)!. Ellis, Friedgut, and Pilpel [5] show that for n...

متن کامل

0 Non - Intersecting Paths , Random Tilings and Random Matrices

We investigate certain measures induced by families of non-intersecting paths in domino tilings of the Aztec diamond, rhombus tilings of an abc-hexagon, a dimer model on a cylindrical brick lattice and a growth model. The measures obtained, e.g. the Krawtchouk and Hahn ensembles, have the same structure as the eigenvalue measures in random matrix theory like GUE, which can in fact can be obtain...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009